As mentioned by @Pranay, the diagonals can be ignored. Without loss of generality (because rook attacks are preserved under row and column permutations), the white queen appears in the top left corner cell $(1,1)$. Now let binary decision variable $r_{ij}$ indicate whether a rook appears in cell $(i,j)$, where $i+j \pmod 2 = 1$. The problem is to maximize $\sum_{i,j} r_{ij}$ subject to linear constraints
\begin{align}
r_{2,3} + r_{2,5} + r_{2,7} &\le 1 \tag1\label1 \\
r_{3,2} + r_{3,4} + r_{3,6} + r_{3,8} &\le 1 \tag2\label2 \\
r_{4,3} + r_{4,5} + r_{4,7} &\le 1 \tag3\label3 \\
r_{5,2} + r_{5,4} + r_{5,6} + r_{5,8} &\le 1 \tag4\label4 \\
r_{6,3} + r_{6,5} + r_{6,7} &\le 1 \tag5\label5 \\
r_{7,2} + r_{7,4} + r_{7,6} + r_{7,8} &\le 1 \tag6\label6 \\
r_{8,3} + r_{8,5} + r_{8,7} &\le 1 \tag7\label7\\
r_{3,2} + r_{5,2} + r_{7,2} &\le 1 \tag8\label8 \\
r_{2,3} + r_{4,3} + r_{6,3} + r_{8,3} &\le 1 \tag9\label9 \\
r_{3,4} + r_{5,4} + r_{7,4} &\le 1 \tag{10}\label{10} \\
r_{2,5} + r_{4,5} + r_{6,5} + r_{8,5} &\le 1 \tag{11}\label{11} \\
r_{3,6} + r_{5,6} + r_{7,6} &\le 1 \tag{12}\label{12} \\
r_{2,7} + r_{4,7} + r_{6,7} + r_{8,7} &\le 1 \tag{13}\label{13} \\
r_{3,8} + r_{5,8} + r_{7,8} &\le 1 \tag{14}\label{14}
\end{align}
The maximum turns out to be
$6 < 7$,
and the optimal linear programming dual variables provide a short certificate of optimality. Explicitly, adding up constraints \eqref{2}, \eqref{4}, \eqref{6}, \eqref{9}, \eqref{11}, and \eqref{13} yields $\sum_{i,j} r_{ij} \le 6$.
This is a similar approach to the answer by @AxiomaticSystem, but the proof here is generated somewhat automatically as a by-product of the LP solve.